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Abstract-Geologic structures are mostly known from scattered data, and structures such as folds or faults are 
drawn in between by using interpolation, which is often based on geologically poor assumptions, such as 
smoothness. The need for more accuracy leads to restoration techniques in which more realistic assumptions are 
introduced. In this context, we have tested a multisurface unfolding procedure. We use a least-squares formulation 
involving the following criteria: initial horizontality, bed-length conservation (during slip on bedding) and local 
volume conservation. Weighted optimization of these criteria gives a compromise between them if they are 
conflicting. We have succesfully tested the method on various theoretical examples and on an analog model: the 
‘paperback experiment’. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Large geologic structures are mostly known from 
scattered data, and interpolation is often needed among 
these data in order to draw structures such as folds or 
faults. For example, when a set of isolated or fuzzy data 
(outcrops, structures in boreholes, seismic reflectors) 
yields, from place to place, the location of folded layers, 
there are always many possibilities for drawing these 
layers. Firstly, each piece of data does not have the same 
reliability. For example, the geometry and the location of 
a given layer may be more reliable with outcrops than 
with seismic data. So it is important to be able to express 
our confidence in the data. Secondly, since folded and 
faulted structures are deformed, assumptions as to the 
geometry and kinematics of deformation are always 
required to choose the interpolation method. For 
example, assuming volume and bed-length (hence area) 
conservation and kinematic boundary conditions (decol- 
lement surface, displacement), the construction of 
balanced cross-sections can be used to develop a reason- 
able structural interpretation of folded and faulted 
structures (Dahlstrom, 1969; Suppe, 1983; Woodward et 
al., 1985). However, such balanced cross-section con- 
struction methods are limited to two dimensions with a 

*Present address: 4 rue Auguste Simon, 94700 Maisons-Alfort, 
France. 

plane strain assumption. When dealing with arcuate folds 
and fault zones, the plane strain assumption is not 
necessarily realistic (Ramsay, 1969; Ramsay and Huber, 
1987). Assuming simple fault and fold kinematics, for 
example, if all the slip vectors for the faults (Barr, 1985) 
or the flexural-slip (McCoss, 1988) have parallel map 
projections, direct three-dimensional restoration is pos- 
sible. However, in this case the simplicity of the 
kinematics limits the application of the methods. From 
a general point of view, for such three-dimensional 
problems, there are at least two types of assumptions 
for the mechanical behaviour of the folded surfaces: 
simple shear folding or flexural-slip folding. 

Simple shear was assumed by Gibbs (1983) and Kerr et 
al. (1993) (heterogeneous simple shear with constant 
shear direction) and by Shaw et al. (1994) (fault-bend 
folds with variable amount, constant direction displace- 
ment). The automatic method developed by Kerr et al. 
(1993) enables them to determine the three-dimensional 
normal fault geometry from the geometry of deformed 
hanging wall horizons, and thus to balance the structure 
when both faults and folds are approximately known. 
The technique proposed by Shaw et al. (1994) (axial 
mapping surface) led to a better understanding of natural 
three-dimensional structures. In both cases, the (strong) 
simple shear assumption must be confirmed in the field, 
for example by observation of distortion within the 
layering (Fig. la). 
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Another possibility is to assume flexural-slip folds 
(Ramsay, 1967) with no distortion within the curved 
surface (Fig. lb). A finite element method (UNFOLD 
program) based on this assumption has been developed 
by Gratier et al. (1991). This program can be used to test 
the geometry of flexural-slip folds by trial and error, and, 
by comparing deformed and restored folded and faulted 
structures, to establish a plausible total finite displace- 
ment field associated with this deformation (Gratier and 
Guillier, 1993). From a geometric point of view, 
Gaussian curvature (equal to the product of the two 
principal curvatures) remains invariant under isometric 
bending, i.e. constant bed-length buckling. If layers are 
flat at deposition, Gaussian curvature remains close to 
zero after folding. Several authors such as Bennis et al. 
(199 l), Lisle (1992) and LCger et al. (1995) have used this 
criterion to distinguish between developable and non- 
developable surfaces. A surface unfolding program 
(PATCHWORK), based on the algorithm of Bennis et 
al. (1991), has been developed at the Institut Franais du 
PCtrole, and is used to test the developability of a single 
layer. The main limitation of these two programs is that 
they have to treat each layer successively and indepen- 
dently. Thus, we thought it would be interesting to 
develop a multisurface unfolding method that is able to 
treat layered blocks (bounded by faults or arbitrary 

surfaces) as a whole. 

Fig. 2. Unfolding viewed as the transformation Y of a folded foliation 
F into an unfolded foliation 2. The leaves of F should be horizontal. Y 
transforms ‘binding surface’ B (where leaves cannot slip on each other) 

to B. The binding is shaded. 

The choice of one of the two basic assumptions (simple 
shear or flexural-slip) must be made by observation of 
deformation markers: distortion (Fig. la) or rigid 
rotation (Fig. lb) within the layers. Simple shear leading 
to similar folds is presumed to occur in metamorphic 
rocks (Ramsay, 1967). However, this type of deformation 
may also develop in incompetent hanging wall sedimen- 
tary horizons, for example above a normal fault 
associated with both compaction and extension (Kerr et 
al., 1993). Flexural-slip is typically the mechanism of 
folding under shallow crustal conditions (within the first 
5-6 km depth for competent layers such as limestones or 
sandstones, Ramsay and Huber, 1987). 

sion method involving three least-squares criteria: initial 
horizontality, bed-length conservation and volume con- 
servation (Thibaut, 1994). Only one scale of folding is 
considered (second-order folds are neglected). In the 
paper we will use the word foliation in its geometrical 

sense. Geometrically, a foliation 3 is an infinite set of 
continuous and non intersecting surfaces, called leaves, 
stacked together so as to fill some volume V (mathema- 
tical definition of foliations is given in LCger et al., 1995). 
Each point of foliated volume V belongs to one and only 
one leaf of F. For the sake of simplicity we identify a 
foliated domain (V, F) and foliation F in what follows. 
Using the geometrical concept of foliation as a tool, we 
define the unfolding process as the transformation Y that 
maps a known folded, deformed foliation, .?, into an 
unknown, horizontally restored foliation F (Fig. 2). 
Throughout this paper, ‘I’ refers to the folded state and 
‘-’ to the restored state. 

AN INVERSION APPROACH TO FOLIATION 
UNFOLDING 

The inverse problem approach 

Under the flexural-slip assumption, we use an inver- To unfold a regular curve isometrically into a straight 
line is always possible. However, to unfold a regular 
surface isometrically into a piece of a plane is possible 
only for very particular surfaces, called developable 
surfaces, which may be cylinders, cones or more general 
surfaces generated by the tangent to some curve in space. 
The Gaussian curvature of these surfaces is everywhere 
zero. 

a b 

Fig. 1. Map view of two types of models for deformation associated 
with folding. (a) Simple shear folding with constant direction of 
shearing (arrow). (b) Flexural-slip folding with rigid rotation of the 
back limb (arrow) and no bed-length change. The dotted lines are the 
projections of the axial surface of the folds. Open squares are 
undeformed markers, shaded squares are the deformed ones in the 

back limb. 

Since geologic surfaces are seldom strictly developable, 
the bed-length conservation hypothesis cannot be exactly 
met in consistency with initial flatness. For this reason, 
we need an unfolding method that uses this hypothesis in 
a flexible way, for instance in a least-squares sense 
(Etchecopar, 1977; Cobbold and Percevault, 1983). 
Therefore, we have chosen the inverse problem approach, 
i.e. multicriteria optimization, because it can give an 
unfolded foliation such that the various hypotheses 
needed can all be met at best. Except for the ‘known 
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binding condition’, our approach consists of defining one 
objective function per hypothesis and in minimizing their 
weighted sum. The greater our confidence in a hypoth- 
esis, the higher will be the corresponding weight. Each 
objective function measures to what extent the hypoth- 
esis is not met, so that the minimization of the overall 
objective function will give the best possible compromise 
consistent with the levels of confidence in the various 
hypotheses. 

Commonly, physics is concerned with predicting the 
effect of a known excitation on a known system, whereas 
geophysics attempts to recover Earth properties from 
the measured effect and given excitation. For this 
reason, inversion techniques are widely used by geophy- 
sicists. In general terms, inversion consists of two main 
steps, the forward problem and the inverse problem. The 
forward problem, d =flp), gives computed data vector d, 
as a map of unknown parameter vector p, which requires 
an assumption, i.e. an initial guess p. of p. The inverse 
problem consists in optimizing p so as to minimize the 
objective function Q(p) = IIf -dO1/*, which measures 
the discrepancy between computed data d and observed 
data do, 11 . II denoting a norm in the data vector space 
(Tarantola, 1987). For instance, the seismic wave 
velocity field in the Earth is usually determined via 
travel-time inversion. 

Now we will describe in detail the geological data that 
we will use to restore a folded foliation in its initial 
undeformed state. 

Geometric formulation of the unfolding process 

We define the unfolding process in geometric terms as 
the mapping Y that minimizes the overall objective 
function 

QP) = w/tQdW + wC?rW + wvQd’W (1) 

where w+ is the weight of objective function Q*, with * 
being h for the horizontality criterion, I for bed-length 
conservation or v for volume conservation. Since Q(Y) is 
left unchanged by pure sliding of the leaves over each 
other, it is necessary to constrain Y so as to prevent this 
indeterminacy. In two-dimensional section balancing, 
this constraint is provided by a pin-line. For multisurface 
unfolding, we assume that the surfaces are linked by a 
binding, as at the back of a book (Fig. 2). Let 23 and a be 
the binding surfaces, in the folded and unfolded states, 
respectively, so that 

U(i) = a. (2) 

In practice, we will usually assume that fi = h meaning 
that the binding does not itself deform. 

Horizontality. To unfold a foliation, we constrain the 
unit vector as(%), normal to the leaves of the unfolded 
foliation F at any point fi, to be as nearly vertical as 
possible (Fig. 3). Consequently, we unfold the foliation ? 

restored state 
Fig. 3. Unit vector &(r?l) is normal to the leaves of folded foliation 2, 
and unit vector &(+I) is normal to the leaves of restored foliation ;F. 
Unit vector e3 denotes the upward vertical. Unit vectors &(1?1) or &(%), 
which are drawn based at points 61 or #I on the leaf, may be viewed as a 
mapping, known as the Gauss mapping, from points CI or 6 to points 

E(6) or E(k) of the unit sphere centred at the origin 0. 

by constraining foliation F = (w)(y) to minimize the 
objective function 

Q&J9 = i / IlWW3) - e3 l12dG 
3= 

(3) 

where es is the upward vertical unit vector. In this 
equation, the squared verticality misfit 1153 - e3112 is 
computed at point fi = 9(h), in unknown unfolded 
foliation F’, the one that we want to constrain to be 
horizontal, but is assigned via Y to point fi in the known 
folded foliation ? for integration purpose. Note that & 
may be viewed as a mapping, the Gauss mapping, from a 
point fi in F to a point e@z) in the unit sphere centred at 
the origin. 

Bed-length conservation. First, we will define in 
geometric terms the tangential strain tensor induced by 
the unfolding process. Then, we will formulate the bed- 
length conservation hypothesis. 

A strain tensor is usually computed by comparing an 
orthonormal base with its image under a transformation. 
Formulae are simple where strains and rotations are 
small. For unfolding, large rotations may occur. There- 
fore, we use a specific orthonormal base of the tangent 
plane in the unfolded foliation in order to compute the 
tangential strain tensor. 

Let us consider an o_rthonormal base @i(6), &(ti)) of 
the tangent plane T,r& to the leaf & at point fi of 
folded foliation ?. The first derivative dY of unfolding 
process Y (Y transfoms points and dY transforms 
vectors at a point) maps this base into a base 
(dJI(gi), d\lr(&)) from which we derive an orthonormal 
base @I, i&) in the following way (Fig. 4): 

I 

d’J’(6 ) 
” = lld~(g,)ll 

e2 = E3 x 51 (4) 
d’P(&) x dw(Z2) 

e3 = lld’P(&,) x dq(Z2)Il ’ 

with Ilv(I denoting the norm of vector v and x the cross- 
product. Then we define tangential strain tensor sii by 

where (, ) denotes the dot product and where 6, = 1 if i = j 
and 6,=0 if i#j. 
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Fig. 4. (&(fi), &(&)) is an orthonormal base of plane Tc Fti tangent to 
leaf-J=* at fi. Similarly, (El@), Ez(4)) is anprthonormal base of plane 
T+J,, = dY(T+F~) tangent to leaf FG =W(Fh) at ??I = Y(G). We derive 
the tangential deformation induced by Y from the comparison of bases 
(fl(El),&‘(i$) and @I, 4). Note that we have chosen TI = dY(&)/ 

IldY(il)ll in the text. 

We define tangential strain intensity by 

(6) 

where cl and e2 are the principal strains. This is 
equivalent to 

- 1)’ + (IldWz)ll - 1)’ 
(7) 

+ 2(d\V(&), d’I’(&))21 

which is more convenient since the computation of the 
tangential base @I, 52) is avoided. Finally, we express the 
bed-length conservation hypothesis in the following way: 
tangential strain intensity should everywhere be zero. If 
this is the case, then unfolding map Y is a tangential 
isometry and the following objective function is zeroed: 

QI = L e(*@))dk 

=;j Kl - lldWdll~2 + (1 - llWW12 (8) 
3 

+ 2(dw(&), d@(&))2]dm. 

Volume conservation. In general, a map Y is locally 
volume conserving if and only if 

@%I) x dQ(vz), dQ(v3)) = Iv1 x ~2, ~3) (9) 

for any linearly independent vectors vl, v2 and v3 at any 
point (Fig. 5). In particular, with (vI,v~,v~) =(&,&2,E3), 

volume is conserved if the objective function 

Qv = ;s, II 1 - WW5) x dWd, W&Nl12d~ (10) 

is zeroed. Since the base (El,E2,E3) is orthonormal, 
(5, x E2,Z3) = 1 and (dY(01) x dY(t2),dY(&)) is the deter- 
minant of the Jacobian matrix dY. 

Fig. 5. Volume variation at a point under transformation Y, defined as 
the relative difference between the volume of the parallelepiped spanned 
by vectors v,, v2 and v) and the volume of the parallelepiped spanned by 

vectors dY(v,), dY(vz) and dY(v3). 

Of course, by volume conservation, as expressed by 
QV= 0, we mean that volume is conserved everywhere 
locally. An overall volume conservation, such as 
expressed by sp d% = lF drTz is only relevant in the 
particular case of incompressible flow (salt diapirs for 
instance). 

The unfolding process in terms ofparameterizations 

The numerical description and handling of recumbent 
folds or blocks of any shape are difficult, especially if the 
boundaries of these blocks are unknown. To cope with 
these difficulties, we choose to describe foliations via 
parameterizations (Fig. 6), ? via 6 and _? via 6,. We 
choose the same curvilinear coordinate domain U for & 
and (i, to express map Y in terms of parameterizations 6 
and 6 (Fig. 7). Hence we have Y(.)= 6(&-l(.)) and 
dY(.)=d&(d&-‘(.)). For both foliations F and 3, we 
assume that the third curvilinear u3 is constant on each 
leaf. 

Previous geometric objective functions may be written 
using parameterizations (5, and 3. The horizontally 
objective function becomes 

@5\5@ 

Fig. 6. Parametric representation @maps curvilinear coordinates u’, tl* 
and u3 into Cartesian coordinates x’, x2 and x3 of points in foliation 3. 

All points in a leaf in 3 have the same value of coordinate u3, 

Fig. 7. Unfolding in terms of pafameterizations. Folded foliation .? is 
described by a parameteriza_tion @ which maps an arbitrary gurvilinear 
coordinate domain U onto 3. Similarly, a par_ameterization @ maps the 
same domain U onto unfolded foliation 3. The unknown of the 
problem, -which is_ the unfolding process Y in geometrical terms, 
b_ecomes a(.) = Y(Q(.)) in terms of parameterizations. Parameterization 
@ should match t_he given binding B> i.e. 6(&-‘@))=S, where 

0 - ‘(8) = Bu implies @(Bcl) = B. 
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QI,(&) = f / IW&4) - e31121d~Id~, (13) 
II 

where ]d&,l is the determinant of the Jacobian matrix d&. 
This is a simple change of variable from ? to U. Since u3 
is constant on the leaves of 3, we may take 
& = (6.1 x &,z)/]]&,i x ‘y.211 and where &,,I and &,.z are 
the first derivatives of Q> with respect to curvilinear 
coordinates U’ and z?. Other objective functions can be 
written in the same way: 

Q[(&) =; / (1 - ]]d&(d&‘(gt))]l)* 
u 

+ 2(&(d&-‘(&)), d&(d&‘(&)))* (12) 

+ (1 - l]d~(d&-‘(g2))l])*]]*d&,ldU 

for bed-length conservation and 

Q”(6) = fJ 11 - (d&(d&-‘(g,)) x d&(d&-‘(E2)). 
u 

d~(d&-‘(g3)))]*d~,du 

for volume conservation. 

(13) 

Discretization and optimization 

We discretize (i.e. we choose a f_inite dimensional 
subspace of) the space of the maps @ and (5, by using 
cubic B-spline tensor products. The B-spline coefficients 
of 6 build unknown parameter vector p (see section ‘The 
inverse problem approach’). Note that the observed 
foliation ? is given via fixed map 6. 

Our forward problemfconsists in evaluating 1153 - es 11 
for horizontality, 1 - IldWWll, 1 - IldWdII and 
(dU@i), d8(&)) for bed-length conservation and 
(d@(&) x dq(&), dw(&)) for volume conservation, at 
the nodes of a regular grid in curvilinear coordinates 
domain U. These quantities build computed data vector d 
which should be as close as possible to zero. Hence the 
‘observed’ data vector do is zero. 

Our inverse problem consists of minimizing the overall 
objective function of Eq. (1). To do this, we have chosen 
the Gauss-Newton procedure, which consists in itera- 
tively solving the linear system (J’J)Sp = - J’6d, where J 
is the Jacobian matrix of the map f, J’is its transpose, 6p 
is the B-spline coefficient modification vector computed 
at each iteration, and 6d is the vector of data misfits. 
Here, 6d=d since do=O. The equality constraints 
corresponding to the known binding surface are taken 
into account by using the technique of Lagrange multi- 
pliers. 

THEORETICAL EXAMPLES 

Now we give the results of our method applied to 
several theoretical examples. 

In order to quantify the quality of the unfolding, we 
compute several indices that measure how well the 
various assumptions are met. For each objective function 
Q* = i lp q?dfi, we define an index 

^ -.-. 

which represents the RMS (root-mean-square) value of 
quantity q*. The horizontality index I,, is the RMS value 
of 

qh = IF3 - e3ll (1% 

which represents, if Es = es, the angle between the normal 
53 to the leaf and the vertical direction e3 (Eq. 3). We give 
this angle in degrees in the following. The bed-length 
conservation index ZI is the RMS value of 

(16) 

where cl and ~2 are the eigenvalues of the tangential strain 
tensor sii (see Eqs 5-8). Lastly, the volume index Z, is the 
RMS value of relative volume variation 

qv = I WW x N(h), dW3)) - 1 I (17) 

(Eq. 10). These three indices are computed over the whole 
foliation. 

Figure 8 shows a cross-section of a cylindrical thrust 
used for all theoretical examples. Figure 9 represents the 
initial guess for the unfolded foliation. This initial guess 
corresponds to the parameter space U, so that 6 is 
initially trivial. The binding is always displayed on the 
left-hand side. Binding and ramp both strike north- 
south. These models involve 1200 B-spline parameters: 
20 parameters in U’ (with U’ =0 on the binding), 5 
parameters in a2 and 4 parameters in u3 for the 3 
Cartesian coordinates x, y, z. Note that, even at the 
discrete step, a foliation involves an infinite number of 
leaves, although 4 parameters in u3 here means only 4 
independent surfaces in that foliation. The rest are 
interpolated by the B-splines. The known position of the 
binding involves 60 equality constraints. 

Fig. 8. Cross-section of the folded foliation 3 studied in the theoretical 
examples. The ramp dips at 30” and the bedding dips at 60” in front of 
the thrust. This structure is almost balanced since the theoretical dip of 

the ramp below the restored thrust is 31.6”. 
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Fig. 9. The initial guess for the unfolded foliation used for all the 
theoretical examples. For all following figures, the lines drawn on the 
foliation leaves are iso-u’ and iso-u2 contours, u1 and u2 being the 
curvilinear coordinates. The left side of the foliation, in thick lines, is the 

binding. 

A thick thrust 

Figure 10(a) shows a thick folded cylindrical thrust and 
Fig. 10(b) shows the result of the unfolding process. 
Table 1 shows that bed-length and volume are very well 
conserved by the unfolding process, whereas horizontal- 
ity is achieved to within about 5”. We have computed dip 
values at 50 points spread out on the ramp of the thrust. 
The average orientation is 000/4OW and the standard 
deviation is 13”, whereas the exact orientation is OOO/ 
31.6W. Figure 10(b) shows that numerical errors are 
concentrated at the bottom of the ramp since dip is 
clearly steeper there (arrow). 

This model required a large number of iterations to 
converge because of the two singular lines, where the fold 
is a chevron. These singular lines are visible at the bottom 
of the ramp for the top leaf and at the top of the ramp for 
the bottom leaf. Since we use twice differentiable B- 
splines, this cannot be achieved without zeroing the 
Jacobian of the parameterization. This induces numerical 
problems because meshes are tiny in the vicinity of these 
lines. Therefore, several parameters have slight effects on 
the objective functions. Consequently, they are very 
poorly determined by the optimization. Indeed, Fig. 
10(b) suggests that horizontality is generally to within 
5”, except in the vicinity of these lines, where it is worse. 

Table 1. For the theoretical examples of Figs 10, 12, 14, 15 and 18, and 
for the three least-squares criteria, this table shows the quality indices, 2, 
computed after optimization and the weights, W, used in the overall 

objective function 

Horizontality Bed-length Volume 

1, Wh 

Fig. 10 4.7” 1.0 0.5% 1.0 0.5% 1.0 
Fig. 12 0.5” 10.0 0.2% 1.0 1.3% 0.001 
Fig. 14 0.1” 10.0 0.4% 1.0 1.5% 0.01 
Fig. 15 4.6” 0.01 8% 1.0 0.5% 10.0 
Fig. 18 0.6” 1.0 1.7% 0.1 0.6% 1.0 

Fig. 10. A thick thrust. (a) Folded structure .?=. Arrows denote singular 
lines along which the fold is a chevron. (b) Unfolded structure I. Arrow 

denotes steeper dips below the ramp. 

A crookedparameterization 

Figure 11 shows a cylindrical foliation with vertical 
front and rear faces. Our purpose is to show that, due to 
our geometric formulation of the unfolding process, the 
crookedness of the parameterization chosen to represent 
the foliation will not perturb the verticality of the front 
and rear faces, which assesses the quality of the method. 
Foliation in Fig. 11 is the same as in Fig. 10(a), but the 
thickness has been reduced by 15% at top and bottom. 
The two singular lines and their problematic vicinity are 
now absent, and the accuracy of the numerical computa- 
tions is thus improved. The top view of the result (Fig. 
12b) clearly demonstrates the validity of this approach, 
since the two faces remain, as expected, vertical and 
perpendicular to the binding. Quality indices shown in 
Table 1 are also satisfactory. The average orientation of 
the ramp is 179.7/31.3W, and the standard deviation is 
0.9”. 

Fig. 11. A cylindrical thrust described by a crooked parameterization 
which explains the waves in the iso-u2 contour lines. The fold geometry is 

identical to Fig. 10(a) (except a smaller thickness). 
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Fig. 12. Same model as Fig. 11 after unfolding. (a) Perspective view. (b) 
Top view. Owing to a geometric formulation, the result is insensitive to 

the idiosyncrasies of parameterization. 

A noncylindrical example 

Folded foliations were exactly cylindrical in the 
previous examples, and a 3D approach was not necessary 
for them. Now we use a noncylindrical example to 
illustrate various possible compromises between conflict- 
ing hypotheses. The foliation in Fig. 13 shows a local 
warp. Therefore, horizontality and volume conservation 
cannot be exactly met together. Besides, since the folded 
foliation is no longer symmetrical, unfolding is expected 
to induce 3D effects. 

First, if we give priority to the horizontality criterion 
(IV,, = 10) as opposed to the volume conservation criterion 
(w,=O.Ol), the warp in the folded foliation, which 
attenuates from front to back, induces a boomerang like 
shape (Fig. 14). Quality indices are very satisfactory for 
horizontality (O.l”) and bed-length conservation (0.4%), 
but rather poor for volume conservation (15%). 

Fig. 13. A folded noncylindrical and nonparallel foliation. 

741 

b 

Fig. 14. Same model as in Fig. 13 after unfolding with priority given to 
horizontality. (a) Perspective view. (b) Top view. 

If we give priority to volume conservation (w, = 10) as 
opposed to horizontality (WA = O.Ol), we obtain the result 
shown in Fig. 15. The warp visible on the folded foliation 
spreads across the entire thickness of the unfolded 
foliation, which becomes horizontal on average. As a 
result, the upper leaf does not show rotation about the 
vertical axis (Fig. 14) 

Fig. 15. Same model as in Fig. 13 after unfolding with priority given to 
volume conservation. (a) Perspective view. (b) Top view. 
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THE ‘PAPERBACK’ EXPERIMENT 

The analog model 

A folded paperback book was constructed with 
successive differently coloured sheets of paper (27 mm 
thick and 21 x 29.7 cm in width and length). This multi- 
surface paperback book model was pressed between rigid 
wooden molds and consolidated by foam injection. The 
model was then sawn along sixteen parallel cross- 
sections. These cross-sections were digitized, and five 
parallel folded surfaces were drawn. A schematic map 
view of the model is given in Fig. l(b). For this example, 
the accuracy of the unfolding process given by the inverse 
method was compared with the results given by the 
UNFOLD finite element program (Gratier et al., 1991). 
The folded surface is divided into rigid triangles, which 
are then laid flat and fitted by a least-squares method. For 
our example, the UNFOLD program fits the triangles 
with an uncertainty value of about 0.5%. 

The numerical folded model 

From the 16 digitized cross-sections, we selected the 13 
that completely cross each foliation leaf from the binding 
to the opposite face. Next, we interactively constructed a 
set of 1296 B-spline parameters used to reconstruct these 
cross-sections satisfactorily. Figure 16 shows the agree- 
ment between digitized and computed cross-sections for 3 
of them. Figure 17 shows a perspective view of the 
reconstructed folded model. This procedure fixes 6. 

The results 

Figure 18 shows the result of unfolding. We computed 

Fig. 16. Digitized cross-sections 1, 7 and 13 (solid lines) and 
corresponding cross-sections computed from the set of B-spline 

oarameters (dashed lines). Scale: 35% of the orieinal. 
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Fig. 17. Perspective view of the folded model. By construction, rear and 
front faces correspond to cross-sections 1 and 13, hence they are vertical 
and orthogonal to the binding surface (left face). They do not 

correspond to original lateral faces. 

50 orientation values on the face opposite the binding 
(Fig. 19). The dispersion is moderate (9”), and the average 
value is accurate (000.5/89.4W instead of 000/90). In our 
opinion, this result is satisfactory since many causes 

Fig. 18. Model of Fig. 17, after unfolding 

Fig. 19. In this stereographic chart (lower hemisphere projection), dots 
represent 50 orientations spread out on the face opposite the binding 
(the right face). The cross represents average value OOO.Sj89.4W (ideally 
000/90). The standard deviation is 9”. Circles represent 17 orientations 

measured on the same face, obtained with the program UNFOLD. 
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contribute to this dispersion: the construction of the 
model, digitizing, B-spline parameter elaboration and 
numerical unfolding. 

Seventeen orientations were estimated on the same 
face of the model obtained with UNFOLD (circles, on 
Fig. 19). Two successive points on the boundary of a 
same leaf define the strike, and a third point on the next 
leaf boundary gives the dip. Such measurements amplify 
possible length differences between successive surfaces: a 
difference of 1% in length (2.1 mm) corresponds to a 17” 
dip deviation from the vertical. This is the maximum 
dispersion observed with both methods. An uncertainty 
below 1% for bed-length conservation seems rather 
satisfactory for application to natural structures. 

CONCLUSIONS 

We advocate an inversion approach for multisurface 
restoration because it yields a compromise between 
conflicting assumptions. This method involves defining 
three least-squares objective functions, representing three 
assumptions - horizontality, bed-length conservation 
and local volume conservation - and in optimizing their 
weighted sum. This inversion method has been success- 
fully tested on several theoretical examples. A cylindri- 
cally folded multisurface was unfolded without any 
problem. A nonparallel folded structure was also 
unfolded in order to test the effect of the weighting 
parameters. With emphasis on the local volume con- 
servation against the horizontality of the restored 
structure, the unfolding of nonparallel structures is 
possible with thickness conservation. This is one of the 
main advantages of multisurface approaches, since single 
layer restoration methods cannot conserve volume for 
nonparallel layering. Currently, our own method renders 
surfaces horizontal on average. A future improvement 
could be to constrain one particular surface to be exactly 
horizontal, so as to restore the structure at the deposition 
time of that surface. Our inversion method was also 
successfully tested on an experimental analog example, 
consisting of a noncylindrical parallel folded paperback 
book. The accuracy of the multisurface inverse method is 
comparable to the accuracy of a single-layer finite 
element method (UNFOLD program). An advantage of 
the B-spline parametric representation of multisurface 
structures is that these surfaces are naturally smooth. 
However, modeling chevron folds is difficult because the 
parameterization degenerates. Weighted multicriteria 
optimization needs much computer time. Nevertheless, 
the key advantage of our restoration method is that it can 
reconcile conflicting assumptions. 

Both folds and faults are common in nature. In such 
cases, since folded units are bounded by faults, the main 
problem with three-dimensional unfolding is the fitting of 
the restored blocks along the faults. Most of the time, 
fault geometry is less well known than folded layer 
geometry. Despite some recent improvements in inter- 
polation tools for faults (inverse method integrating a 

thread criterion, Thibaut et al., 1996) the three-dimen- 
sional compatibility between folds and faults remains a 
target, especially integration of kinematic constraints 
between folding and faulting processes. 
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